

Time shortened fatigue testing for identifying critical process parameters – benefits and limitations

M. Zimmermann, S. Schettler 60 Years RUMUL Symposium Diessenhofen / Switzerland

My "Lovestory" with Rumul

Duration 2010 – 2016 (2019)

- 16 projects were funded (including a total of 25 participants)
- Steel: 8 projects,
- Non-ferrous metals: 2 project,
- MEMS: 1 project,
- Composites: 4 projects,
- Coordination: 1 project

DRESDEN

concept

My "Lovestory" with Rumul

Activities at TU Dresden

Data-driven design of metamaterials

Coatings based on High Entropy Alloys

Fatigue Crack Growth in Mg-Alloys

financed by

DFG Deutsche Forschungsgemeinschaft

Triply Periodic Minimal Surface Structures

Interactive fibre elastomers

Fatigue of clinched joints

Materials characterization and testing

Key competences and goals

Fraunhofer

IWS

DRESDEN

concept

DRESDEN

Materials Testing Equipment: High Frequency Fatigue Testing

Ultrasonic Fatigue Test Equipment

F_{max} < R_e **f ≈ 20 kHz**

1000Hz - resonance pulsation test bench

F_{max} = 50 kN **f ≈ 1000 Hz**

F_{max} = 100 kN **f ≈ 50 - 200 Hz**

🖉 Fraunhofer

IWS

TECHNISCHE UNIVERSITÄT

DRESDEN

DRESDEN

concept

Materials Testing Equipment: Multi-axial Testing

Activities at Fraunhofer IWS

Any process influences the material condition and hence the fatigue behavior!

My sincere belief: A reliable fatigue prediction needs an understanding of the underlying damage mechanisms and accompanying statistical evaluations!

Laser assisted processing

02

Influence of Laser Cutting

mm

Process-related material condition: forming process

Process-related material condition: forming process

Process-related material condition: forming and cutting process

Laser cutting

- The focused laser beam hits the workpiece and melts the material locally
- A gas jet coaxial with the laser beam expells the material
- Process parameters for cutting:
 - Laser power P_L
 - Gas pressure p_{gas}
 - Feed rate v
 - Focal position d_z
 - Working distance d_A
 - Nozzle diameter d_d

DRESDEN

concept

Fraunhofer

IWS

Laser cutting Cutting edge phenomena

Cutting edge phenomena:

- Grooved structure (Roughness)
- Heat-affected zone
- Slope tolerance
- Melt flow stall
- Dross adhesion

The dross is created from the melt film \rightarrow Influenced by the process parameters

funded by

Forschungsgemeinschaft

Fraunhofer

IWS

DRESDEN

concept

UNIVERSITÄ

DRESDEN

Laser cutting Cutting edge phenomena

Cutting edge phenomena:

- Grooved structure (Roughness)
- Heat-affected zone
- Slope tolerance
- Melt flow stall
- dross adhesion

The dross is created from the melt film \rightarrow Influenced by the process parameters

a) Dross-free

b) Small droplets

c) Large droplets

d) Very coarse dross

Laser cutting Influences on dross shapes

- Feed rate v •
- Gas pressure p_{Gas} ٠
- Focal position d_z ٠
- Laser power P_L ٠

TECHNISCHE UNIVERSITÄT

DRESDEN

IWS

DRESDEN

concept

Laser cutting

Fatigue behavior depending on the material condition AND the process parameters

funded by

G

Deutsche

Forschungsgemeinschaft

TECHNISCHE UNIVERSITÄT

DRESDEN

DRESDEN

concept

🗾 Fraunhofer

IWS

Laser cutting

Material: 1.4301 – metastable austenitic steel

--> dominating notch effect: mesoscopic, however microstructural effect (phase transformation) results in true durability in the VHCF regime

.

Influence of laser beam welding

1997 - B. 19

03

Process-related material condition: joining process

M. Cremer *, M. Zimmermann, H.-J. Christ

Institut für Werkstofftechnik, Universität Siegen, 57068 Siegen, Germany

MDP

concept

Advanced Materials Research ISSN: 1662-8985, Vols. 891-892, pp 1397-1402 doi:10.4028/www.scientific.net/AMR.891-892.1397 © 2014 Trans Tech Publications Ltd, Switzerland

Online: 2014-03-12

Fatigue behaviour of laser beam welded circular weld seams under multi-axial loading

Martina Zimmermann^{1,2,a}, Jörg Bretschneider^{2,b}, Gunter Kirchhoff^{2,c}, Uwe Stamm^{2,d}, Jens Standfuss^{2,e}, Berndt Brenner^{2,f} ¹Institut für Werkstoffwissenschaft, TU Dresden, D-1069 Dresden, Germany ²Fraunhofer Institut für Werkstoff- und Strahltechnik, D-01277 Dresden, Germany ^amartina.zimmermann@tu-dresden.de,joerg.bretschneider@iws.fhg.de, ^cgunter.kirchhoff@ iws.fhg.de, ^duwe.stamm@ iws.fhg.de, ^ejens.standfuss@ iws.fhg.de, ^berndt.brenner@ iws.fhg.de

Article

Fatigue Behavior of Laser-Cut Sheet Metal Parts with Brazed-On Elements

André Till Zeuner¹, Robert Kühne^{2,*}, Christiane Standke¹, David Köberlin³, Thomas Wanski¹, Sebastian Schettler², Uwe Füssel³ and Martina Zimmermann^{1,2}

Fraunhofer

VHCF 8: Fatigue behavior of brazed joints

Laser Beam Welding

joined steel component

- Fatigue Testing up to $N_G = 10^8$ loading cycles
- Test frequency: approx. **1.000 Hz**
- Test bench: Gigaforte 50 (resonance pulsation test bench)

IWS

concept

Laser Beam Welding

joined steel component

 Σ 60 samples / N_{G} = 10⁸ Zyklen

- Parameterset A leads to higher scatter at low loads
 → higher probability of failure
- Many failures at high numbers of loading cycles (from 10⁷ up to 10⁸)
- Component failure in VHCF
 range!

S – N – diagram: Variation of process parameters

--> dominating notch effect: combination of mesoscopic and macroscopic effect with failure at weld root in the range of the laser entry point

Laser Beam Welding

joined steel component

- Significant influence of minor geometrical changes in weld seam!
- unfavorable weld position causes earlier component failures!
- Change of the failure location

Influence of additive manufacturing

IWS

DRESDEN

Additive Manufacturing

DRESDE

concept

Additive Manufacturing

 large scattering, even of apparently similar conditions

Prediction of fatigue life difficult:

- often incomplete informations about the manufacturing process, material quality and causes of failure
- Xu et al. 2015 - no treatment machined surface martensitic Xu et al. - 2015 - no treatment - machined surface - lamellar Liu et al. - 2014 - no treatment - machined surface Rekedal et al. - 2015 - 4h at 800C - as-built surface Wycisk et al. - 2014 - 3h at 650C - as-built surface Rafi et al. - 2013 - 4h at 650C - machined surface Wycisk et al. - 2014 - 3h at 650C - machined surface Hooerweder et al. - 2012 - 4h at 650C - EDM surface Gong et al. - 2012 - 4h at 650C - sand blasted surface Wycisk et al. - 2013 - 3h at 650C - shotpeened surface Liu et al. - 2014 - no treatment - machined surface Edwards et al. - 2014 - no treatment - as-built surface Wycisk et al. - 2014 - 3h at 650C - as-built surface Rafi et al. - 2013 - 4h at 650C - machined surface MMPDS - 2010 - 0.5 inch casting - machined surface - R=0.1 ••••• MMPDS - 2010 - wrought - annealed - machined surface - R=0.01 MMPDS - 2010 - 3 inch casting - machined surface - R=0.1 — — MMPDS - 2010 - wrought - aged - machined surface - R=0.1 800 400 σeff (MPa) 200 100 00 0 50 [1] 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 Cycles to Failure

Fraunhofer

IWS

Edwards & Ramulu - 2014 - no treatment - machined surface

Edwards & Ramulu - 2014 - no treatment - as-built surface

Additive Manufacturing

- Example: Ti6Al4V
- L-PBF Process
- Variation of
 - L-PBF machine
 - Layer thickness
 - Laser power
 - Scanning speed
 - Orientation
 - Heat treatment
- Goals: Process parameters Heat treatment

- \rightarrow high density! (consistently > 99,8%)
- \rightarrow application-oriented approach (based on VDI 3405 Sheet 2.4)
- ightarrow Reduction of process-related residual stresses

Methods

• Material: Inert gas atomised Ti-6Al-4V Grade 23 (ELI), LPBF process

	Batch 1 (C1)	Batch 2 (C2)	Batch 3 (C3)	Batch 4 (C4)	Batch 5 (C5)	Batch 6 (C6)	Batch 7 (C7)	Batch 8 (C8)
Layer thickness in µm	30		60		25			50
Power in W	200		300		200			370
Scan velocity in mm/s	850		750		1200			1500
Building direction	0° (ţ)	90° (↔)	0° (ţ)	90° (↔)		0° (ţ)		0° (ţ)
Heat treatment	SR		SR		SR	HIP	AN	AN

- SR ... Stress relieved
- HIP... Hot Isostatic Pressing
- AN ... Annealed
- → A total of 202 specimens manufactured

Methods

• Material: Inert gas atomised Ti-6Al-4V Grade 23 (ELI), LPBF process

Heat treatment	Parameter		
Stress relieved (SR)	550 °C / 180 min / Argon / furnace cooling		
Annealed (AN)	842 °C / 270 min / Argon / furnace cooling to 200°C, cooling to RT using Argon		
Hot Isostatic Pressing (HIP)	920 °C / 120 min / 1000 bar		

Additive Manufacturing

S-N curve – Overall comparison

- C6 \rightarrow HIP-heat treatment leads to significant increase in fatigue strength (factor \geq 2)
- Large number of failures beyond the knee point $(N \approx 10^6)$ of the S-N curve
- Scattering over several decades within individual batches
 - stochastic distribution of the defect population within the batches
 - Analysis of the S-N curve is subject to great uncertainty

IWS

DRESDEN

concept

Additive Manufacturing

Evaluation of the failure-causing defects according to the \sqrt{area} - concept

IWS

Fraunhofer

TECHNISCHE UNIVERSITÄT

С...

DRESDEN

concept

Seite 34

Application of Kitagawa-Takahashi diagramm

El-Haddad approach

$$\Delta\sigma_{1E8} = \Delta\sigma_{1E8,0} \sqrt{\frac{a_0}{a+a_0}} = \Delta\sigma_{1E8,0} \sqrt{\frac{\sqrt{area_{eff0}}}{\sqrt{area_{eff}} + \sqrt{area_{eff0}}}} \quad \text{with} \quad a_0 = \sqrt{area_{eff0}} = \frac{1}{\pi} \left(\frac{\Delta K_{th,LC}}{C * \Delta\sigma_{1E8,0}}\right)^2$$

• Estimation of $\Delta \sigma_{1E8,0}$ and $\Delta K_{th,LC}$

$$\Delta \sigma_{1E8,0} = 6,4HV \left(\frac{1-R}{3-R}\right)$$

$$\Delta K_{th,LC} = 1,82 \cdot l^{0}^{165} + 53,5 \cdot \text{HV}^{-0,52} \quad \text{According to Rigon et al. (2022)}$$

l is a length parameters and can be correlated to the martensite lath width or alpha grains in Ti6Al4V

Conclusions

- High to very high cycle fatigue of materials in the process-related condition is always related to a competition and / or a combination of notch effects on different length scales
- Slightest changes in the process parameter settings can have a significant effect on the fatigue strength
- In order to fully exploit fatigue strength in the high to very high cycle range of materials in processed conditions generalized S-N curves in combination with safety factors (as are suggested in many fatigue assessment directives) do not mirror the potential of process optimization strategies

While a basic understanding of the true fatigue mechanisms are essential, to predict the VHCF strength of real components in process-related states this is only the tip of the iceberg!

Many thanks to the members of my team in Dresden involved in the work presented!

Many thanks to YOU for listening!

© Icon made by Freepik from www.flaticon.com

Hope to see you again in Dresden in 2025!

Many thanks to YOU for listening!

© Icon made by Freepik from www.flaticon.com

Kontakt

Prof. Dr.-Ing. Martina Zimmermann Kompetenzfeld Werkstoffcharakterisierung und –prüfung, Fraunhofer IWS Professur für Werkstoffmechanik und Schadensfallanalyse TU Dresden Telefon +49 351 83391-3573 Martina.zimmermann@iws.fraunhofer.de

#lightatwork

Follow us!

Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Winterbergstraße 28 DE-01277 Dresden

www.iws.fraunhofer.de

Social media icons created by Freepik – Flaticon